
43

7 Unpacking the Frame

We have seen how to generate PCM samples from blocks of subband samples that
are packaged inside frames in an MPEG audio stream, but we still need to see the
details. This chapter will explain most of them.

Each frame has four parts, the header, optional a CRC field for error checking, then
the audio data, which is split into side information and subband samples, and finally
there might be ancillary data.

Let’s examine these parts one after the other.

syncword�(12) id�(1)

layer�(2)

bitrate�(4)

protection�(1)

samplerate�(2)

padding�(1)

mode�(2)

private�(1)

original�(1)

emphasis�(2)

copyright�(1)

mode�extension�(2)

idEx�(1)

Fig. 23: The header layout

7.1 The Header

The first four byte of a frame are the header.

〈 private declarations 1 〉 +≡ (77)

#define HEADER_SIZE 4

It serves two purposes: synchronization, that is finding the beginning of a frame—
we deal with that later—, and providing information on the stream. The function

44 7 Unpacking the Frame

decode header will extract this information into info and return 1. If frame does not
point to a valid header, it will return 0.

〈 auxiliary functions 69 〉 +≡ (78)

int decode header (mp3 info ∗info ,unsigned char ∗frame)
{ unsigned int header ;

header = (((((frame [0]� 8) | frame [1])� 8) | frame [2])� 8) | frame [3];
info→header = header ;
〈 decode the header 79 〉
〈 determine frame size 90 〉
return 1;

}
According to the MPEG standard, the first 12 bit of the header are 1111 1111 1111.

They are called the “syncword” and help us to synchronize the stream. Later versions
(see chapter 14) use, however, only 11 bit for the syncword and set the 12th bit to 0
to distinguish an extended bit stream from a standard version 1 bit stream.

Once we found the syncword, we do not need to keep it.

〈 decode the header 79 〉 ≡ (79)

{ int n = 11; 〈 get the next n header bit 80 〉
if (bit 6= #7FF) return 0;

} Used in 78.

We read n bit from the header by shifting it to the right until only n bit remain
and assign the result to bit . Then we discard these n bit from the header by shifting
it left.

〈 get the next n header bit 80 〉 ≡ (80)

int bit = header � (32− n);

header = header � n; Used in 79, 81, 82, 83, 85, 87, 88, 92, 94, 95, and 98.

We use the 12th bit of the header, also called the ID extension bit, and the next
bit of the header, the ID bit, to determine the MPEG version .

Constant ID ext. ID Version

MP3_V2_5 0 0 MPEG Version 2.5

MP3_V2_0 1 0 MPEG Version 2 (ISO/IEC 13818-3)

MP3_V1_0 1 1 MPEG Version 1 (ISO/IEC 11172-3)

0 1 reserved

Tab. 24: Version

〈 decode the header 79 〉 +≡ (81)

{ int n = 2; 〈 get the next n header bit 80 〉
if (bit ≡ 0) info→version = MP3_V2_5;
else if (bit ≡ 2) info→version = MP3_V2_0;

